
个人履历:梁宇琛,教授,博士生导师,工学博士,教育部海外引才专项获得者、江苏特聘教授、金山青年特聘教授,国家重点研发计划课题负责人。曾在英国考文垂大学完成本科并直博攻读,留校任讲师兼课程主管3年,并于2021年获英国高等教育学会(HEA)会士资格,受邀担任中科院一区TOP期刊Computers in Industry副主编。
研究方向:数字孪生,激光增材,激光冲击强化。
教学方面:主讲《工业互联网与物联网》及《智能运维与健康管理》等本科生课程,《数字孪生技术及其工程应用》研究生课程,以及全英文博士研究生课程《Additive Manufacturing Technology》及《Additive Manufacturing Principles and Applications》。
代表性项目经历:
(1) 国家重点研发计划课题,2024-2027,主持,在研
(2) 教育部海外引才专项,2023-2026,主持,在研
(3) 江苏特聘教授,2023-2026,主持,在研
(4) 金山青年特聘教授启动项目,2023-2026,主持,在研
(5) 中国博士后科学基金第74批面上资助,2023-2025,主持,在研
代表性学术发表:
(1) Liang, Y., Wang, Y., Li, W., Pham, D. T., & Lu, J. (2025). Adaptive fault diagnosis of machining processes enabled by hybrid deep learning and incremental transfer learning. Computers in Industry, 167, 104262. https://doi.org/10.1016/j.compind.2024.104262
(2) Liang, Y., Wang, Y., Chiong, R., Li, A., & Lu, J. (2025). Cutting tool life prediction and extension through generative model-augmented deep learning and laser remanufacturing techniques. Engineering Applications of Artificial Intelligence, 158 (Part A), 111276. https://doi.org/10.1016/j.engappai.2025.111276
(3) Liang, Y., Wang, Y., & Lu, J. (2024). Extending cutting tool remaining life through deep learning and laser shock peening remanufacturing techniques. Journal of Cleaner Production, 477, 143876. https://doi.org/10.1016/j.jclepro.2023.143876
(4) Liang, Y., Li, W., Lou, P., & Hu, J. (2022). Thermal error prediction for heavy-duty CNC machines enabled by long short-term memory networks and fog-cloud architecture. Journal of Manufacturing Systems, 62, 950–963. https://doi.org/10.1016/j.jmsy.2020.10.008
(5) Liang, Y., Wang, S., Li, W., & Lu, X. (2019). Data-driven anomaly diagnosis for machining processes. Engineering, 5(4), 646–652. https://doi.org/10.1016/j.eng.2018.11.036
(6) Liang, Y., Lu, X., Li, W., & Wang, S. (2018). Cyber physical system and big data enabled energy efficient machining optimisation. Journal of Cleaner Production, 187, 46–62. https://doi.org/10.1016/j.jclepro.2018.03.098
(7) Liang, Y., Li, W., Lu, X., & Wang, S. (2019). Fog computing and convolutional neural network enabled prognosis for machining process optimization. Journal of Manufacturing Systems, 52, 32–42. https://doi.org/10.1016/j.jmsy.2019.05.004
学术兼职:
(1) Computers in Industry(中科院一区TOP期刊),副主编
(2) 英国高等教育学会(The Higher Education Academy, HEA)会士
(3) 镇江市青年科技工作者协会,副秘书长
(4) 中国图学学会数字孪生专业委员会,委员
(5) 国际自主再制造会议(International Workshop on Autonomous Remanufacturing, IWAR),科学委员会专家
电子邮件:liangyuchen@ujs.edu.cn
地址:江苏省镇江市学府路江苏大学机械工程学院